How to Serialize and Deserialize JSON in C#

JSON serialization and deserialization in C# has become remarkably straightforward with the System.Text.Json namespace, introduced in .NET Core 3.0 as a modern alternative to Newtonsoft.Json.

The JsonSerializer class provides static methods to convert objects to JSON strings (Serialize) and parse JSON strings back into objects (Deserialize).

For basic serialization, you can simply call JsonSerializer.Serialize(object) on any object, and it will automatically convert public properties into their JSON representation.

Similarly, JsonSerializer.Deserialize<T>(jsonString) converts JSON back into strongly-typed objects. The process becomes even more powerful when combined with custom attributes like [JsonPropertyName] to control property naming and [JsonIgnore] to exclude specific properties from serialization.

When working with more complex scenarios, you can customize the serialization process using JsonSerializerOptions.

This allows you to control various aspects such as case sensitivity, indentation, handling of null values, and custom converters. For example, setting PropertyNameCaseInsensitive = true enables case-insensitive property matching during deserialization, while WriteIndented = true produces formatted JSON output.

It's also worth noting that System.Text.Json is designed with performance in mind, offering better performance compared to Newtonsoft.Json for most scenarios.

Example

// Define a class to serialize
public class Person
{
    public string Name { get; set; }
    [JsonPropertyName("birth_date")]
    public DateTime BirthDate { get; set; }
    [JsonIgnore]
    public int InternalId { get; set; }
}

// Serialization example
Person person = new Person 
{ 
    Name = "John Doe", 
    BirthDate = new DateTime(1990, 1, 1) 
};
string json = JsonSerializer.Serialize(person);

// Deserialization example
Person deserializedPerson = JsonSerializer.Deserialize<Person>(json);

// Using JsonSerializerOptions
var options = new JsonSerializerOptions
{
    WriteIndented = true,
    PropertyNameCaseInsensitive = true,
    PropertyNamingPolicy = JsonNamingPolicy.CamelCase
};
string prettyJson = JsonSerializer.Serialize(person, options);

// Working with collections
List<Person> people = new List<Person> { person };
string jsonArray = JsonSerializer.Serialize(people);
List<Person> deserializedPeople = JsonSerializer.Deserialize<List<Person>>(jsonArray);
2
860

Related

In C#, you can format an integer with commas (thousands separator) using ToString with a format specifier.

int number = 1234567;
string formattedNumber = number.ToString("N0"); // "1,234,567"
Console.WriteLine(formattedNumber);

Explanation:

"N0": The "N" format specifier stands for Number, and "0" means no decimal places. The output depends on the culture settings, so in regions where , is the decimal separator, you might get 1.234.567.

Alternative:

You can also specify culture explicitly if you need a specific format:

using System.Globalization;

int number = 1234567;
string formattedNumber = number.ToString("N0", CultureInfo.InvariantCulture);
Console.WriteLine(formattedNumber); // "1,234,567"
4
437

Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.

Use 'using' to Auto-Close

Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.

Example

using (SqlConnection conn = new SqlConnection(connectionString))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn))
    using (SqlDataReader reader = cmd.ExecuteReader())
    {
        while (reader.Read())
        {
            Console.WriteLine(reader["Username"]);
        }
    } // ✅ Auto-closes reader here
} // ✅ Auto-closes connection here

This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.

⚡ Alternative: Manually Close in finally Block

If you need explicit control, you can manually close it inside a finally block.

SqlDataReader? reader = null;
try
{
    using SqlConnection conn = new SqlConnection(connectionString);
    conn.Open();
    using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn);
    reader = cmd.ExecuteReader();

    while (reader.Read())
    {
        Console.WriteLine(reader["Username"]);
    }
}
finally
{
    reader?.Close();  // ✅ Closes reader if it was opened
}

This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.

1
170

Slow initial load times can drive users away from your React application. One powerful technique to improve performance is lazy loading - loading components only when they're needed.

Let's explore how to implement this in React.

The Problem with Eager Loading

By default, React bundles all your components together, forcing users to download everything upfront. This makes navigation much quicker and more streamlined once this initial download is complete.

However, depending on the size of your application, it could also create a long initial load time.

import HeavyComponent from './HeavyComponent';
import AnotherHeavyComponent from './AnotherHeavyComponent';

function App() {
  return (
    <div>
      {/* These components load even if user never sees them */}
      <HeavyComponent />
      <AnotherHeavyComponent />
    </div>
  );
}

React.lazy() to the Rescue

React.lazy() lets you defer loading components until they're actually needed:

import React, { lazy, Suspense } from 'react';

// Components are now loaded only when rendered
const HeavyComponent = lazy(() => import('./HeavyComponent'));
const AnotherHeavyComponent = lazy(() => import('./AnotherHeavyComponent'));

function App() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <HeavyComponent />
        <AnotherHeavyComponent />
      </Suspense>
    </div>
  );
}

Route-Based Lazy Loading

Combine with React Router for even better performance:

import React, { lazy, Suspense } from 'react';
import { BrowserRouter, Routes, Route } from 'react-router-dom';

const Home = lazy(() => import('./pages/Home'));
const Dashboard = lazy(() => import('./pages/Dashboard'));
const Settings = lazy(() => import('./pages/Settings'));

function App() {
  return (
    <BrowserRouter>
      <Suspense fallback={<div>Loading...</div>}>
        <Routes>
          <Route path="/" element={<Home />} />
          <Route path="/dashboard" element={<Dashboard />} />
          <Route path="/settings" element={<Settings />} />
        </Routes>
      </Suspense>
    </BrowserRouter>
  );
}

Implement these techniques in your React application today and watch your load times improve dramatically!

1
104