How to Use Common Table Expressions (CTEs) in SQL Server for Readable Queries

Common Table Expressions (CTEs) are a powerful SQL Server feature that can dramatically improve query readability and maintainability.

Introduced in SQL Server 2005, CTEs let you define a temporary result set that you can reference within a SELECT, INSERT, UPDATE, DELETE, or MERGE statement.

Basic CTE Syntax

A CTE follows this pattern:

WITH CTE_Name AS (
    -- Your query here
)
SELECT * FROM CTE_Name;

The main components are:

  • The WITH keyword to start the CTE
  • A name for your CTE
  • The AS keyword
  • Parentheses containing your query
  • A statement that references the CTE

Why Use CTEs?

CTEs offer several advantages:

  • Improved readability: Breaking complex queries into named, logical segments
  • Self-referencing capability: Useful for hierarchical or recursive data
  • Query simplification: Reducing nested subqueries
  • Code reusability: Using the same temporary result multiple times in a query

Simple CTE Example

Here's a basic example that calculates average order values by customer category:

-- Without CTE
SELECT 
    c.CustomerCategory,
    SUM(o.TotalAmount) / COUNT(DISTINCT o.OrderID) AS AvgOrderValue
FROM Customers c
JOIN Orders o ON c.CustomerID = o.CustomerID
GROUP BY c.CustomerCategory;

-- With CTE
WITH OrderSummary AS (
    SELECT 
        c.CustomerCategory,
        o.OrderID,
        o.TotalAmount
    FROM Customers c
    JOIN Orders o ON c.CustomerID = o.CustomerID
)
SELECT 
    CustomerCategory,
    SUM(TotalAmount) / COUNT(DISTINCT OrderID) AS AvgOrderValue
FROM OrderSummary
GROUP BY CustomerCategory;

The CTE version clearly separates the data gathering from the aggregation logic.

Multiple CTEs in a Single Query

You can chain CTEs for even more complex scenarios:

WITH 
CustomerOrders AS (
    SELECT 
        c.CustomerID,
        c.CustomerName,
        COUNT(o.OrderID) AS OrderCount
    FROM Customers c
    LEFT JOIN Orders o ON c.CustomerID = o.CustomerID
    GROUP BY c.CustomerID, c.CustomerName
),
OrderCategories AS (
    SELECT
        CustomerID,
        CASE 
            WHEN OrderCount = 0 THEN 'Inactive'
            WHEN OrderCount BETWEEN 1 AND 5 THEN 'Regular'
            ELSE 'VIP'
        END AS CustomerCategory
    FROM CustomerOrders
)
SELECT 
    c.CustomerName,
    o.CustomerCategory
FROM CustomerOrders c
JOIN OrderCategories o ON c.CustomerID = o.CustomerID
ORDER BY o.CustomerCategory, c.CustomerName;

Recursive CTEs

One of the most powerful CTE features is recursion, which is perfect for hierarchical data like organizational charts or category trees:

WITH EmployeeHierarchy AS (
    -- Anchor member (starting point)
    SELECT 
        EmployeeID,
        EmployeeName,
        ManagerID,
        0 AS Level
    FROM Employees
    WHERE ManagerID IS NULL -- Start with top-level employees
    
    UNION ALL
    
    -- Recursive member (references itself)
    SELECT 
        e.EmployeeID,
        e.EmployeeName,
        e.ManagerID,
        eh.Level + 1
    FROM Employees e
    INNER JOIN EmployeeHierarchy eh ON e.ManagerID = eh.EmployeeID
)
SELECT 
    EmployeeID,
    EmployeeName,
    Level,
    REPLICATE('--', Level) + EmployeeName AS HierarchyDisplay
FROM EmployeeHierarchy
ORDER BY Level, EmployeeName;

This query produces an indented organization chart starting from top-level managers.

CTEs vs. Temporary Tables or Table Variables

Unlike temporary tables or table variables, CTEs:

  • Exist only during query execution
  • Don't require explicit cleanup
  • Can't have indexes added to them
  • Are primarily for improving query structure and readability

Best Practices

  1. Use meaningful names that describe what the data represents
  2. Keep individual CTEs focused on a single logical operation
  3. Comment complex CTEs to explain their purpose
  4. Consider performance - CTEs are not always more efficient than subqueries
  5. Avoid excessive nesting - if your query becomes too complex, consider stored procedures or multiple queries

When Not to Use CTEs

CTEs might not be the best choice when:

  • You need to reference the same large dataset multiple times (temp tables may be more efficient)
  • You need to add indexes for performance optimization
  • Your recursive CTE might exceed the default recursion limit (100)

By mastering CTEs, you can write SQL that's not only more maintainable but also easier to understand and debug.

3
51

Related

XML (Extensible Markup Language) is a widely used format for storing and transporting data.

In C#, you can create XML files efficiently using the XmlWriter and XDocument classes. This guide covers both methods with practical examples.

Writing XML Using XmlWriter

XmlWriter provides a fast and memory-efficient way to generate XML files by writing elements sequentially.

Example:

using System;
using System.Xml;

class Program
{
    static void Main()
    {
        using (XmlWriter writer = XmlWriter.Create("person.xml"))
        {
            writer.WriteStartDocument();
            writer.WriteStartElement("Person");

            writer.WriteElementString("FirstName", "John");
            writer.WriteElementString("LastName", "Doe");
            writer.WriteElementString("Age", "30");

            writer.WriteEndElement();
            writer.WriteEndDocument();
        }
        Console.WriteLine("XML file created successfully.");
    }
}

Output (person.xml):

<?xml version="1.0" encoding="utf-8"?>
<Person>
    <FirstName>John</FirstName>
    <LastName>Doe</LastName>
    <Age>30</Age>
</Person>

Writing XML Using XDocument

The XDocument class from LINQ to XML provides a more readable and flexible way to create XML files.

Example:

using System;
using System.Xml.Linq;

class Program
{
    static void Main()
    {
        XDocument doc = new XDocument(
            new XElement("Person",
                new XElement("FirstName", "John"),
                new XElement("LastName", "Doe"),
                new XElement("Age", "30")
            )
        );
        doc.Save("person.xml");
        Console.WriteLine("XML file created successfully.");
    }
}

This approach is ideal for working with complex XML structures and integrating LINQ queries.

When to Use Each Method

  • Use XmlWriter when performance is critical and you need to write XML sequentially.
  • Use XDocument when you need a more readable, maintainable, and flexible way to manipulate XML.

Conclusion

Writing XML files in C# is straightforward with XmlWriter and XDocument. Choose the method that best suits your needs for performance, readability, and maintainability.

2
272

String interpolation, introduced in C# 6.0, provides a more readable and concise way to format strings compared to traditional concatenation (+) or string.Format(). Instead of manually inserting variables or placeholders, you can use the $ symbol before a string to directly embed expressions inside brackets.

string name = "Walt";
string job = 'Software Engineer';

string message = $"Hello, my name is {name} and I am a {job}";
Console.WriteLine(message);

This would produce the final output of:

Hello, my name is Walt and I am a Software Engineer

String interpolation can also be chained together into a multiline string (@) for even cleaner more concise results:

string name = "Walt";
string html = $@"
    <div>
        <h1>Welcome, {name}!</h1>
    </div>";
37
148

When working with SQL Server, you may often need to count the number of unique values in a specific column. This is useful for analyzing data, detecting duplicates, and understanding dataset distributions.

Using COUNT(DISTINCT column_name)

To count the number of unique values in a column, SQL Server provides the COUNT(DISTINCT column_name) function. Here’s a simple example:

SELECT COUNT(DISTINCT column_name) AS distinct_count
FROM table_name;

This query will return the number of unique values in column_name.

Counting Distinct Values Across Multiple Columns

If you need to count distinct combinations of multiple columns, you can use a subquery:

SELECT COUNT(*) AS distinct_count
FROM (SELECT DISTINCT column1, column2 FROM table_name) AS subquery;

This approach ensures that only unique pairs of column1 and column2 are counted.

Why Use COUNT DISTINCT?

  • Helps in identifying unique entries in a dataset.
  • Useful for reporting and analytics.
  • Efficient way to check for duplicates.

By leveraging COUNT(DISTINCT column_name), you can efficiently analyze your database and extract meaningful insights. Happy querying!

1
115