How to Use Common Table Expressions (CTEs) in SQL Server for Readable Queries

Common Table Expressions (CTEs) are a powerful SQL Server feature that can dramatically improve query readability and maintainability.

Introduced in SQL Server 2005, CTEs let you define a temporary result set that you can reference within a SELECT, INSERT, UPDATE, DELETE, or MERGE statement.

Basic CTE Syntax

A CTE follows this pattern:

WITH CTE_Name AS (
    -- Your query here
)
SELECT * FROM CTE_Name;

The main components are:

  • The WITH keyword to start the CTE
  • A name for your CTE
  • The AS keyword
  • Parentheses containing your query
  • A statement that references the CTE

Why Use CTEs?

CTEs offer several advantages:

  • Improved readability: Breaking complex queries into named, logical segments
  • Self-referencing capability: Useful for hierarchical or recursive data
  • Query simplification: Reducing nested subqueries
  • Code reusability: Using the same temporary result multiple times in a query

Simple CTE Example

Here's a basic example that calculates average order values by customer category:

-- Without CTE
SELECT 
    c.CustomerCategory,
    SUM(o.TotalAmount) / COUNT(DISTINCT o.OrderID) AS AvgOrderValue
FROM Customers c
JOIN Orders o ON c.CustomerID = o.CustomerID
GROUP BY c.CustomerCategory;

-- With CTE
WITH OrderSummary AS (
    SELECT 
        c.CustomerCategory,
        o.OrderID,
        o.TotalAmount
    FROM Customers c
    JOIN Orders o ON c.CustomerID = o.CustomerID
)
SELECT 
    CustomerCategory,
    SUM(TotalAmount) / COUNT(DISTINCT OrderID) AS AvgOrderValue
FROM OrderSummary
GROUP BY CustomerCategory;

The CTE version clearly separates the data gathering from the aggregation logic.

Multiple CTEs in a Single Query

You can chain CTEs for even more complex scenarios:

WITH 
CustomerOrders AS (
    SELECT 
        c.CustomerID,
        c.CustomerName,
        COUNT(o.OrderID) AS OrderCount
    FROM Customers c
    LEFT JOIN Orders o ON c.CustomerID = o.CustomerID
    GROUP BY c.CustomerID, c.CustomerName
),
OrderCategories AS (
    SELECT
        CustomerID,
        CASE 
            WHEN OrderCount = 0 THEN 'Inactive'
            WHEN OrderCount BETWEEN 1 AND 5 THEN 'Regular'
            ELSE 'VIP'
        END AS CustomerCategory
    FROM CustomerOrders
)
SELECT 
    c.CustomerName,
    o.CustomerCategory
FROM CustomerOrders c
JOIN OrderCategories o ON c.CustomerID = o.CustomerID
ORDER BY o.CustomerCategory, c.CustomerName;

Recursive CTEs

One of the most powerful CTE features is recursion, which is perfect for hierarchical data like organizational charts or category trees:

WITH EmployeeHierarchy AS (
    -- Anchor member (starting point)
    SELECT 
        EmployeeID,
        EmployeeName,
        ManagerID,
        0 AS Level
    FROM Employees
    WHERE ManagerID IS NULL -- Start with top-level employees
    
    UNION ALL
    
    -- Recursive member (references itself)
    SELECT 
        e.EmployeeID,
        e.EmployeeName,
        e.ManagerID,
        eh.Level + 1
    FROM Employees e
    INNER JOIN EmployeeHierarchy eh ON e.ManagerID = eh.EmployeeID
)
SELECT 
    EmployeeID,
    EmployeeName,
    Level,
    REPLICATE('--', Level) + EmployeeName AS HierarchyDisplay
FROM EmployeeHierarchy
ORDER BY Level, EmployeeName;

This query produces an indented organization chart starting from top-level managers.

CTEs vs. Temporary Tables or Table Variables

Unlike temporary tables or table variables, CTEs:

  • Exist only during query execution
  • Don't require explicit cleanup
  • Can't have indexes added to them
  • Are primarily for improving query structure and readability

Best Practices

  1. Use meaningful names that describe what the data represents
  2. Keep individual CTEs focused on a single logical operation
  3. Comment complex CTEs to explain their purpose
  4. Consider performance - CTEs are not always more efficient than subqueries
  5. Avoid excessive nesting - if your query becomes too complex, consider stored procedures or multiple queries

When Not to Use CTEs

CTEs might not be the best choice when:

  • You need to reference the same large dataset multiple times (temp tables may be more efficient)
  • You need to add indexes for performance optimization
  • Your recursive CTE might exceed the default recursion limit (100)

By mastering CTEs, you can write SQL that's not only more maintainable but also easier to understand and debug.

3
51

Related

In C#, you can format an integer with commas (thousands separator) using ToString with a format specifier.

int number = 1234567;
string formattedNumber = number.ToString("N0"); // "1,234,567"
Console.WriteLine(formattedNumber);

Explanation:

"N0": The "N" format specifier stands for Number, and "0" means no decimal places. The output depends on the culture settings, so in regions where , is the decimal separator, you might get 1.234.567.

Alternative:

You can also specify culture explicitly if you need a specific format:

using System.Globalization;

int number = 1234567;
string formattedNumber = number.ToString("N0", CultureInfo.InvariantCulture);
Console.WriteLine(formattedNumber); // "1,234,567"
4
439

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

4
296

Slow initial load times can drive users away from your React application. One powerful technique to improve performance is lazy loading - loading components only when they're needed.

Let's explore how to implement this in React.

The Problem with Eager Loading

By default, React bundles all your components together, forcing users to download everything upfront. This makes navigation much quicker and more streamlined once this initial download is complete.

However, depending on the size of your application, it could also create a long initial load time.

import HeavyComponent from './HeavyComponent';
import AnotherHeavyComponent from './AnotherHeavyComponent';

function App() {
  return (
    <div>
      {/* These components load even if user never sees them */}
      <HeavyComponent />
      <AnotherHeavyComponent />
    </div>
  );
}

React.lazy() to the Rescue

React.lazy() lets you defer loading components until they're actually needed:

import React, { lazy, Suspense } from 'react';

// Components are now loaded only when rendered
const HeavyComponent = lazy(() => import('./HeavyComponent'));
const AnotherHeavyComponent = lazy(() => import('./AnotherHeavyComponent'));

function App() {
  return (
    <div>
      <Suspense fallback={<div>Loading...</div>}>
        <HeavyComponent />
        <AnotherHeavyComponent />
      </Suspense>
    </div>
  );
}

Route-Based Lazy Loading

Combine with React Router for even better performance:

import React, { lazy, Suspense } from 'react';
import { BrowserRouter, Routes, Route } from 'react-router-dom';

const Home = lazy(() => import('./pages/Home'));
const Dashboard = lazy(() => import('./pages/Dashboard'));
const Settings = lazy(() => import('./pages/Settings'));

function App() {
  return (
    <BrowserRouter>
      <Suspense fallback={<div>Loading...</div>}>
        <Routes>
          <Route path="/" element={<Home />} />
          <Route path="/dashboard" element={<Dashboard />} />
          <Route path="/settings" element={<Settings />} />
        </Routes>
      </Suspense>
    </BrowserRouter>
  );
}

Implement these techniques in your React application today and watch your load times improve dramatically!

1
104