Measuring the execution time of C# methods is essential for performance optimization and identifying bottlenecks in your application.
The most straightforward approach uses the Stopwatch class from the System.Diagnostics namespace, which provides high-precision timing capabilities.
Stopwatch
System.Diagnostics
This approach is perfect for quick performance checks during development or when troubleshooting specific methods in production code.
Here's a practical example: Imagine you have a method that processes a large dataset and you want to measure its performance.
First, add using System.Diagnostics; to your imports. Then implement timing as shown below:
using System.Diagnostics;
public void MeasurePerformance() { Stopwatch stopwatch = new Stopwatch(); // Start timing stopwatch.Start(); // Call the method you want to measure ProcessLargeDataset(); // Stop timing stopwatch.Stop(); // Get the elapsed time Console.WriteLine($"Processing time: {stopwatch.ElapsedMilliseconds} ms"); // Or use ElapsedTicks for higher precision Console.WriteLine($"Processing ticks: {stopwatch.ElapsedTicks}"); }
For more advanced scenarios, consider using the BenchmarkDotNet library, which offers comprehensive benchmarking with statistical analysis.
BenchmarkDotNet
Simply install the NuGet package, decorate methods with the [Benchmark] attribute, and run BenchmarkRunner.Run<YourBenchmarkClass>() to generate detailed reports comparing different implementation strategies.
[Benchmark]
BenchmarkRunner.Run<YourBenchmarkClass>()
Raw string literals in C# provide a flexible way to work with multiline strings, with some interesting rules around how quotes work.
The key insight is that you can use any number of double quotes (three or more) to delimit your string, as long as the opening and closing sequences have the same number of quotes.
"""
// Three quotes - most common usage string basic = """ This is a basic multiline string """; // Four quotes - when your content has three quotes string withThreeQuotes = """" Here's some text with """quoted""" content """"; // Five quotes - when your content has four quotes string withFourQuotes = """"" Here's text with """"nested"""" quotes """""; // Six quotes - for even more complex scenarios string withFiveQuotes = """""" Look at these """""nested""""" quotes! """""";
The general rule is that if your string content contains N consecutive double quotes, you need to wrap the entire string with at least N+1 quotes. This ensures the compiler can properly distinguish between your content and the string's delimiters.
// Example demonstrating the N+1 rule string example1 = """ No quotes inside """; // 3 quotes is fine string example2 = """" Contains """three quotes""" """"; // Needs 4 quotes (3+1) string example3 = """"" Has """"four quotes"""" """""; // Needs 5 quotes (4+1)
// Indentation example string properlyIndented = """ { "property": "value", "nested": { "deeper": "content" } } """; // This line's position determines the indentation
This flexibility with quote counts makes raw string literals extremely versatile, especially when dealing with content that itself contains quotes, like JSON, XML, or other structured text formats.
XML (Extensible Markup Language) is a widely used format for storing and transporting data.
In C#, you can create XML files efficiently using the XmlWriter and XDocument classes. This guide covers both methods with practical examples.
XmlWriter
XDocument
XmlWriter provides a fast and memory-efficient way to generate XML files by writing elements sequentially.
using System; using System.Xml; class Program { static void Main() { using (XmlWriter writer = XmlWriter.Create("person.xml")) { writer.WriteStartDocument(); writer.WriteStartElement("Person"); writer.WriteElementString("FirstName", "John"); writer.WriteElementString("LastName", "Doe"); writer.WriteElementString("Age", "30"); writer.WriteEndElement(); writer.WriteEndDocument(); } Console.WriteLine("XML file created successfully."); } }
Output (person.xml):
person.xml
<?xml version="1.0" encoding="utf-8"?> <Person> <FirstName>John</FirstName> <LastName>Doe</LastName> <Age>30</Age> </Person>
The XDocument class from LINQ to XML provides a more readable and flexible way to create XML files.
using System; using System.Xml.Linq; class Program { static void Main() { XDocument doc = new XDocument( new XElement("Person", new XElement("FirstName", "John"), new XElement("LastName", "Doe"), new XElement("Age", "30") ) ); doc.Save("person.xml"); Console.WriteLine("XML file created successfully."); } }
This approach is ideal for working with complex XML structures and integrating LINQ queries.
Writing XML files in C# is straightforward with XmlWriter and XDocument. Choose the method that best suits your needs for performance, readability, and maintainability.
Reading a file line by line is useful when handling large files without loading everything into memory at once.
✅ Best Practice: Use File.ReadLines() which is more memory efficient.
Example
foreach (string line in File.ReadLines("file.txt")) { Console.WriteLine(line); }
Why use ReadLines()?
Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).
Alternative: Use StreamReader (More Control)
For scenarios where you need custom processing while reading the contents of the file:
using (StreamReader reader = new StreamReader("file.txt")) { string? line; while ((line = reader.ReadLine()) != null) { Console.WriteLine(line); } }
Why use StreamReader?
Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).
When to Use ReadAllLines()? If you need all lines at once, use:
string[] lines = File.ReadAllLines("file.txt");
Caution: Loads the entire file into memory—avoid for large files!
Register for my free weekly newsletter.