Understanding SQL Joins: INNER JOIN, LEFT JOIN, RIGHT JOIN, and FULL JOIN

When working with relational databases, JOIN operations allow you to retrieve data from multiple tables based on a common column.

SQL Server supports different types of joins, each serving a specific purpose. Let’s break them down with examples.

1. INNER JOIN

The INNER JOIN returns only the rows where there is a match in both tables.

SELECT A.id, A.name, B.order_id
FROM Customers A
INNER JOIN Orders B ON A.id = B.customer_id;
  • If a customer has no matching order, they won’t appear in the result.

2. LEFT JOIN (or LEFT OUTER JOIN)

The LEFT JOIN returns all rows from the left table (Customers), and only matching rows from the right table (Orders). If there’s no match, NULL values are returned for the right table columns.

SELECT A.id, A.name, B.order_id
FROM Customers A
LEFT JOIN Orders B ON A.id = B.customer_id;
  • Customers without orders will still appear, but order_id will be NULL.

3. RIGHT JOIN (or RIGHT OUTER JOIN)

The RIGHT JOIN works the opposite of LEFT JOIN, returning all rows from the right table (Orders) and only matching rows from the left table (Customers).

SELECT A.id, A.name, B.order_id
FROM Customers A
RIGHT JOIN Orders B ON A.id = B.customer_id;
  • Orders without a matching customer will still appear, but name will be NULL.

4. FULL JOIN (or FULL OUTER JOIN)

The FULL JOIN returns all records from both tables. If there’s no match, NULL values will be shown in the missing columns.

SELECT A.id, A.name, B.order_id
FROM Customers A
FULL JOIN Orders B ON A.id = B.customer_id;
  • This ensures that all customers and all orders appear in the results, even if there’s no match.

Quick Summary:

Join Type Includes Matching Rows Includes Non-Matching Rows (Left Table) Includes Non-Matching Rows (Right Table)
INNER JOIN
LEFT JOIN
RIGHT JOIN
FULL JOIN

Understanding these joins can help you extract data efficiently and ensure that your queries return the expected results. Happy querying!

1
61

Related

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

4
293

Storing passwords as plain text is dangerous. Instead, you should hash them using a strong, slow hashing algorithm like BCrypt, which includes built-in salting and resistance to brute-force attacks.

Step 1: Install BCrypt NuGet Package

Before using BCrypt, install the BCrypt.Net-Next package:

dotnet add package BCrypt.Net-Next

or via NuGet Package Manager:

Install-Package BCrypt.Net-Next

Step 2: Hash a Password

Use BCrypt.HashPassword() to securely hash a password before storing it:

using BCrypt.Net;

string password = "mySecurePassword123";
string hashedPassword = BCrypt.HashPassword(password);

Console.WriteLine(hashedPassword); // Output: $2a$12$...

Step 3: Verify a Password

To check a user's login attempt, use BCrypt.Verify():

bool isMatch = BCrypt.Verify("mySecurePassword123", hashedPassword);
Console.WriteLine(isMatch); // Output: True

Ensuring proper hashing should be at the top of your list when it comes to building authentication systems.

3
265

String interpolation, introduced in C# 6.0, provides a more readable and concise way to format strings compared to traditional concatenation (+) or string.Format(). Instead of manually inserting variables or placeholders, you can use the $ symbol before a string to directly embed expressions inside brackets.

string name = "Walt";
string job = 'Software Engineer';

string message = $"Hello, my name is {name} and I am a {job}";
Console.WriteLine(message);

This would produce the final output of:

Hello, my name is Walt and I am a Software Engineer

String interpolation can also be chained together into a multiline string (@) for even cleaner more concise results:

string name = "Walt";
string html = $@"
    <div>
        <h1>Welcome, {name}!</h1>
    </div>";
37
148