Menu

How to Use STRING_AGG() for Concatenating Rows into a Single Column in SQL Server

When working with SQL Server, you may encounter scenarios where you need to combine multiple row values into a single column. Prior to SQL Server 2017, this required using STUFF() with FOR XML PATH(), but now, the STRING_AGG() function provides a simpler approach.

What is STRING_AGG()?

The STRING_AGG() function concatenates values from multiple rows into a single string with a specified separator.

Basic Syntax:

SELECT STRING_AGG(column_name, ', ') AS concatenated_values
FROM table_name;
  • column_name: The column whose values you want to concatenate.
  • ', ': The separator used between values.

Example Usage

Consider a Customers table:

id name
1 Alice
2 Bob
3 Charlie

Using STRING_AGG(), we can concatenate the names:

SELECT STRING_AGG(name, ', ') AS customer_names
FROM Customers;

Result:

Alice, Bob, Charlie

Using STRING_AGG() with GROUP BY

You can also use STRING_AGG() within GROUP BY to aggregate data by a specific column. Consider an Orders table:

customer_id product
1 Laptop
1 Mouse
2 Keyboard
2 Monitor

To get a list of products purchased by each customer:

SELECT customer_id, STRING_AGG(product, ', ') AS purchased_products
FROM Orders
GROUP BY customer_id;

Result:

customer_id | purchased_products
------------|-------------------
1           | Laptop, Mouse
2           | Keyboard, Monitor

Sorting Values in STRING_AGG()

By default, STRING_AGG() does not guarantee an order. To enforce ordering, use WITHIN GROUP (ORDER BY column_name). Example:

SELECT STRING_AGG(name, ', ') WITHIN GROUP (ORDER BY name) AS sorted_names
FROM Customers;

Key Benefits of STRING_AGG():

  • Eliminates complex workarounds like STUFF() with FOR XML PATH().
  • More readable and concise syntax.
  • Works efficiently with GROUP BY for aggregating related data.

STRING_AGG() is a powerful function that simplifies string concatenation in SQL Server, making queries cleaner and more efficient. Happy querying!

1
144

Related

XML (Extensible Markup Language) is a widely used format for storing and transporting data.

In C#, you can create XML files efficiently using the XmlWriter and XDocument classes. This guide covers both methods with practical examples.

Writing XML Using XmlWriter

XmlWriter provides a fast and memory-efficient way to generate XML files by writing elements sequentially.

Example:

using System;
using System.Xml;

class Program
{
    static void Main()
    {
        using (XmlWriter writer = XmlWriter.Create("person.xml"))
        {
            writer.WriteStartDocument();
            writer.WriteStartElement("Person");

            writer.WriteElementString("FirstName", "John");
            writer.WriteElementString("LastName", "Doe");
            writer.WriteElementString("Age", "30");

            writer.WriteEndElement();
            writer.WriteEndDocument();
        }
        Console.WriteLine("XML file created successfully.");
    }
}

Output (person.xml):

<?xml version="1.0" encoding="utf-8"?>
<Person>
    <FirstName>John</FirstName>
    <LastName>Doe</LastName>
    <Age>30</Age>
</Person>

Writing XML Using XDocument

The XDocument class from LINQ to XML provides a more readable and flexible way to create XML files.

Example:

using System;
using System.Xml.Linq;

class Program
{
    static void Main()
    {
        XDocument doc = new XDocument(
            new XElement("Person",
                new XElement("FirstName", "John"),
                new XElement("LastName", "Doe"),
                new XElement("Age", "30")
            )
        );
        doc.Save("person.xml");
        Console.WriteLine("XML file created successfully.");
    }
}

This approach is ideal for working with complex XML structures and integrating LINQ queries.

When to Use Each Method

  • Use XmlWriter when performance is critical and you need to write XML sequentially.
  • Use XDocument when you need a more readable, maintainable, and flexible way to manipulate XML.

Conclusion

Writing XML files in C# is straightforward with XmlWriter and XDocument. Choose the method that best suits your needs for performance, readability, and maintainability.

2
304

Primary constructors, introduced in C# 12, offer a more concise way to define class parameters and initialize fields.

This feature reduces boilerplate code and makes classes more readable.

Traditional Approach vs Primary Constructor

Before primary constructors, you would likely write something like the following:

public class UserService
{
    private readonly ILogger _logger;
    private readonly IUserRepository _repository;

    public UserService(ILogger logger, IUserRepository repository)
    {
        _logger = logger;
        _repository = repository;
    }

    public async Task<User> GetUserById(int id)
    {
        _logger.LogInformation("Fetching user {Id}", id);
        return await _repository.GetByIdAsync(id);
    }
}

With primary constructors, this becomes:

public class UserService(ILogger logger, IUserRepository repository)
{
    public async Task<User> GetUserById(int id)
    {
        logger.LogInformation("Fetching user {Id}", id);
        return await repository.GetByIdAsync(id);
    }
}

Key Benefits

  1. Reduced Boilerplate: No need to declare private fields and write constructor assignments
  2. Parameters Available Throughout: Constructor parameters are accessible in all instance methods
  3. Immutability by Default: Parameters are effectively readonly without explicit declaration

Real-World Example

Here's a practical example using primary constructors with dependency injection:

public class OrderProcessor(
    IOrderRepository orderRepo,
    IPaymentService paymentService,
    ILogger<OrderProcessor> logger)
{
    public async Task<OrderResult> ProcessOrder(Order order)
    {
        try
        {
            logger.LogInformation("Processing order {OrderId}", order.Id);
            
            var paymentResult = await paymentService.ProcessPayment(order.Payment);
            if (!paymentResult.Success)
            {
                return new OrderResult(false, "Payment failed");
            }

            await orderRepo.SaveOrder(order);
            return new OrderResult(true, "Order processed successfully");
        }
        catch (Exception ex)
        {
            logger.LogError(ex, "Failed to process order {OrderId}", order.Id);
            throw;
        }
    }
}

Tips and Best Practices

  1. Use primary constructors when the class primarily needs dependencies for its methods
  2. Combine with records for immutable data types:
public record Customer(string Name, string Email)
{
    public string FormattedEmail => $"{Name} <{Email}>";
}
  1. Consider traditional constructors for complex initialization logic

Primary constructors provide a cleaner, more maintainable way to write C# classes, especially when working with dependency injection and simple data objects.

1
70

Removing duplicates from a list in C# is a common task, especially when working with large datasets. C# provides multiple ways to achieve this efficiently, leveraging built-in collections and LINQ.

Using HashSet (Fastest for Unique Elements)

A HashSet<T> automatically removes duplicates since it only stores unique values. This is one of the fastest methods:

List<int> numbers = new List<int> { 1, 2, 2, 3, 4, 4, 5 };
numbers = new HashSet<int>(numbers).ToList();
Console.WriteLine(string.Join(", ", numbers)); // Output: 1, 2, 3, 4, 5

Using LINQ Distinct (Concise and Readable)

LINQ’s Distinct() method provides an elegant way to remove duplicates:

List<int> numbers = new List<int> { 1, 2, 2, 3, 4, 4, 5 };
numbers = numbers.Distinct().ToList();
Console.WriteLine(string.Join(", ", numbers)); // Output: 1, 2, 3, 4, 5

Removing Duplicates by Custom Property (For Complex Objects)

When working with objects, DistinctBy() from .NET 6+ simplifies duplicate removal based on a property:

using System.Linq;
using System.Collections.Generic;

class Person
{
    public string Name { get; set; }
    public int Age { get; set; }
}

List<Person> people = new List<Person>
{
    new Person { Name = "Alice", Age = 30 },
    new Person { Name = "Bob", Age = 25 },
    new Person { Name = "Alice", Age = 30 }
};

people = people.DistinctBy(p => p.Name).ToList();
Console.WriteLine(string.Join(", ", people.Select(p => p.Name))); // Output: Alice, Bob

For earlier .NET versions, use GroupBy():

people = people.GroupBy(p => p.Name).Select(g => g.First()).ToList();

Performance Considerations

  • HashSet<T> is the fastest but only works for simple types.
  • Distinct() is easy to use but slower than HashSet<T> for large lists.
  • DistinctBy() (or GroupBy()) is useful for complex objects but may have performance trade-offs.

Conclusion

Choosing the best approach depends on the data type and use case. HashSet<T> is ideal for primitive types, Distinct() is simple and readable, and DistinctBy() (or GroupBy()) is effective for objects.

1
399