How to Use the Null Coalescing Assignment Operator in C#

The null coalescing assignment operator (??=) introduced in C# 8.0 provides a cleaner way to assign a value to a variable only when it's null. Let's see how and when to use it effectively.

Quick Example

// Instead of writing this:
if (myVariable == null)
    myVariable = defaultValue;

// You can write this:
myVariable ??= defaultValue;

Real-World Examples

Simple Property Initialization

public class UserSettings
{
    private List<string> _preferences;
    
    public List<string> Preferences
    {
        get
        {
            _preferences ??= new List<string>();
            return _preferences;
        }
    }
}

Service Caching

public class ServiceCache
{
    private ApiClient _client;
    
    public ApiClient GetClient()
    {
        _client ??= new ApiClient("https://api.example.com");
        return _client;
    }
}

Lazy Configuration Loading

public class ConfigurationManager
{
    private Dictionary<string, string> _settings;
    
    public string GetSetting(string key)
    {
        _settings ??= LoadSettingsFromFile();
        return _settings.TryGetValue(key, out var value) ? value : null;
    }
    
    private Dictionary<string, string> LoadSettingsFromFile()
    {
        // Load settings logic here
        return new Dictionary<string, string>();
    }
}

Common Gotchas

Reference vs Value Types

The operator works differently with value types - they need to be nullable:

// This won't compile
int count ??= 1;

// This works
int? count ??= 1;

Chaining Operations

// You can chain the operator
string result = first ??= second ??= "default";

// Equivalent to:
if (first == null)
{
    if (second == null)
    {
        second = "default";
    }
    first = second;
}
result = first;

Thread Safety

The operator is not thread-safe by default:

// Not thread-safe
public class SharedCache
{
    private static Dictionary<string, object> _cache;
    
    public object GetItem(string key)
    {
        // Multiple threads could evaluate null simultaneously
        _cache ??= new Dictionary<string, object>();
        return _cache.GetValueOrDefault(key);
    }
}

// Thread-safe version
public class SharedCache
{
    private static Dictionary<string, object> _cache;
    private static readonly object _lock = new object();
    
    public object GetItem(string key)
    {
        lock (_lock)
        {
            _cache ??= new Dictionary<string, object>();
            return _cache.GetValueOrDefault(key);
        }
    }
}

Performance Considerations

The null coalescing assignment operator is compiled to efficient IL code. It generally performs the same as an explicit null check:

// These compile to similar IL
obj ??= new object();

if (obj == null)
    obj = new object();

When to Use It

✅ Good use cases:

  • Lazy initialization of properties
  • Caching values
  • Setting default values for nullable types
  • Simplifying null checks in property getters

❌ Avoid using when:

  • You need thread-safe initialization (use Lazy<T> instead)
  • The right-hand expression has side effects
  • You need more complex null-checking logic

Visual Studio Tips

You can use Quick Actions (Ctrl+.) to convert between traditional null checks and the ??= operator. Look for the suggestion "Use null coalescing assignment" when you have a pattern like:

if (variable == null)
    variable = value;

Version Compatibility

This feature requires:

  • C# 8.0 or later
  • .NET Core 3.0+ or .NET Standard 2.1+
  • Visual Studio 2019+
1
51

Related

Raw string literals in C# provide a flexible way to work with multiline strings, with some interesting rules around how quotes work.

The key insight is that you can use any number of double quotes (three or more) to delimit your string, as long as the opening and closing sequences have the same number of quotes.

The Basic Rules

  1. You must use at least three double quotes (""") to start and end a raw string literal
  2. The opening and closing quotes must have the same count
  3. The closing quotes must be on their own line for proper indentation
  4. If your string content contains a sequence of double quotes, you need to use more quotes in your delimiter than the longest sequence in your content

Examples with Different Quote Counts

// Three quotes - most common usage
string basic = """
    This is a basic
    multiline string
    """;

// Four quotes - when your content has three quotes
string withThreeQuotes = """"
    Here's some text with """quoted""" content
    """";

// Five quotes - when your content has four quotes
string withFourQuotes = """""
    Here's text with """"nested"""" quotes
    """"";

// Six quotes - for even more complex scenarios
string withFiveQuotes = """"""
    Look at these """""nested""""" quotes!
    """""";

The N+1 Rule

The general rule is that if your string content contains N consecutive double quotes, you need to wrap the entire string with at least N+1 quotes. This ensures the compiler can properly distinguish between your content and the string's delimiters.

// Example demonstrating the N+1 rule
string example1 = """
    No quotes inside
    """; // 3 quotes is fine

string example2 = """"
    Contains """three quotes"""
    """"; // Needs 4 quotes (3+1)

string example3 = """""
    Has """"four quotes""""
    """""; // Needs 5 quotes (4+1)

Practical Tips

  • Start with three quotes (""") as your default
  • Only increase the quote count when you actually need to embed quote sequences in your content
  • The closing quotes must be on their own line and should line up with the indentation you want
  • Any whitespace to the left of the closing quotes defines the baseline indentation
// Indentation example
string properlyIndented = """
    {
        "property": "value",
        "nested": {
            "deeper": "content"
        }
    }
    """; // This line's position determines the indentation

This flexibility with quote counts makes raw string literals extremely versatile, especially when dealing with content that itself contains quotes, like JSON, XML, or other structured text formats.

1
71

When working with SQL Server, you may often need to count the number of unique values in a specific column. This is useful for analyzing data, detecting duplicates, and understanding dataset distributions.

Using COUNT(DISTINCT column_name)

To count the number of unique values in a column, SQL Server provides the COUNT(DISTINCT column_name) function. Here’s a simple example:

SELECT COUNT(DISTINCT column_name) AS distinct_count
FROM table_name;

This query will return the number of unique values in column_name.

Counting Distinct Values Across Multiple Columns

If you need to count distinct combinations of multiple columns, you can use a subquery:

SELECT COUNT(*) AS distinct_count
FROM (SELECT DISTINCT column1, column2 FROM table_name) AS subquery;

This approach ensures that only unique pairs of column1 and column2 are counted.

Why Use COUNT DISTINCT?

  • Helps in identifying unique entries in a dataset.
  • Useful for reporting and analytics.
  • Efficient way to check for duplicates.

By leveraging COUNT(DISTINCT column_name), you can efficiently analyze your database and extract meaningful insights. Happy querying!

0
104

Reading a file line by line is useful when handling large files without loading everything into memory at once.

✅ Best Practice: Use File.ReadLines() which is more memory efficient.

Example

foreach (string line in File.ReadLines("file.txt"))
{
    Console.WriteLine(line);
}

Why use ReadLines()?

Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).

Alternative: Use StreamReader (More Control)

For scenarios where you need custom processing while reading the contents of the file:

using (StreamReader reader = new StreamReader("file.txt"))
{
    string? line;
    while ((line = reader.ReadLine()) != null)
    {
        Console.WriteLine(line);
    }
}

Why use StreamReader?

Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).

When to Use ReadAllLines()? If you need all lines at once, use:

string[] lines = File.ReadAllLines("file.txt");

Caution: Loads the entire file into memory—avoid for large files!

3
254