How to Safely Cancel an Async Operation in C#

Asynchronous programming is essential for building responsive applications, but it comes with challenges - particularly when you need to cancel operations.

Here's how to safely implement cancellation in C#.

Using CancellationTokenSource

The key to proper cancellation is the CancellationTokenSource class. This provides a token that can be passed to async methods and monitored for cancellation requests.

// Create a cancellation source with timeout
var cts = new CancellationTokenSource(TimeSpan.FromSeconds(10));
var token = cts.Token;

try
{
    // Pass token to async operations
    await DoLongRunningTaskAsync(token);
}
catch (OperationCanceledException)
{
    // Handle cancellation gracefully
    Console.WriteLine("Operation was canceled");
}
finally
{
    // Always dispose the CancellationTokenSource
    cts.Dispose();
}

Implementing Cancellation in Your Methods

When writing cancellable async methods, check for cancellation at appropriate points:

async Task DoLongRunningTaskAsync(CancellationToken token)
{
    // Check before starting expensive work
    token.ThrowIfCancellationRequested();
    
    for (int i = 0; i < 100; i++)
    {
        // Periodically check during loops
        if (token.IsCancellationRequested)
        {
            // Clean up resources if needed
            CleanupResources();
            
            // Then throw the standard exception
            throw new OperationCanceledException(token);
        }
        
        await Task.Delay(100, token); // Built-in methods accept tokens
    }
}

Best Practices

  1. Always dispose of CancellationTokenSource objects
  2. Use token.ThrowIfCancellationRequested() for cleaner code
  3. Check for cancellation before expensive operations
  4. Pass the token to all nested async calls
  5. Handle OperationCanceledException appropriately in your calling code

By following these patterns, you can ensure your async operations respond promptly to cancellation requests while maintaining clean, resource-efficient code.

28
58

Related

Primary constructors, introduced in C# 12, offer a more concise way to define class parameters and initialize fields.

This feature reduces boilerplate code and makes classes more readable.

Traditional Approach vs Primary Constructor

Before primary constructors, you would likely write something like the following:

public class UserService
{
    private readonly ILogger _logger;
    private readonly IUserRepository _repository;

    public UserService(ILogger logger, IUserRepository repository)
    {
        _logger = logger;
        _repository = repository;
    }

    public async Task<User> GetUserById(int id)
    {
        _logger.LogInformation("Fetching user {Id}", id);
        return await _repository.GetByIdAsync(id);
    }
}

With primary constructors, this becomes:

public class UserService(ILogger logger, IUserRepository repository)
{
    public async Task<User> GetUserById(int id)
    {
        logger.LogInformation("Fetching user {Id}", id);
        return await repository.GetByIdAsync(id);
    }
}

Key Benefits

  1. Reduced Boilerplate: No need to declare private fields and write constructor assignments
  2. Parameters Available Throughout: Constructor parameters are accessible in all instance methods
  3. Immutability by Default: Parameters are effectively readonly without explicit declaration

Real-World Example

Here's a practical example using primary constructors with dependency injection:

public class OrderProcessor(
    IOrderRepository orderRepo,
    IPaymentService paymentService,
    ILogger<OrderProcessor> logger)
{
    public async Task<OrderResult> ProcessOrder(Order order)
    {
        try
        {
            logger.LogInformation("Processing order {OrderId}", order.Id);
            
            var paymentResult = await paymentService.ProcessPayment(order.Payment);
            if (!paymentResult.Success)
            {
                return new OrderResult(false, "Payment failed");
            }

            await orderRepo.SaveOrder(order);
            return new OrderResult(true, "Order processed successfully");
        }
        catch (Exception ex)
        {
            logger.LogError(ex, "Failed to process order {OrderId}", order.Id);
            throw;
        }
    }
}

Tips and Best Practices

  1. Use primary constructors when the class primarily needs dependencies for its methods
  2. Combine with records for immutable data types:
public record Customer(string Name, string Email)
{
    public string FormattedEmail => $"{Name} <{Email}>";
}
  1. Consider traditional constructors for complex initialization logic

Primary constructors provide a cleaner, more maintainable way to write C# classes, especially when working with dependency injection and simple data objects.

1
70

Closing a SqlDataReader correctly prevents memory leaks, connection issues, and unclosed resources. Here’s the best way to do it.

Use 'using' to Auto-Close

Using using statements ensures SqlDataReader and SqlConnection are closed even if an exception occurs.

Example

using (SqlConnection conn = new SqlConnection(connectionString))
{
    conn.Open();
    using (SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn))
    using (SqlDataReader reader = cmd.ExecuteReader())
    {
        while (reader.Read())
        {
            Console.WriteLine(reader["Username"]);
        }
    } // ✅ Auto-closes reader here
} // ✅ Auto-closes connection here

This approach auto-closes resources when done and it is cleaner and less error-prone than manual closing.

⚡ Alternative: Manually Close in finally Block

If you need explicit control, you can manually close it inside a finally block.

SqlDataReader? reader = null;
try
{
    using SqlConnection conn = new SqlConnection(connectionString);
    conn.Open();
    using SqlCommand cmd = new SqlCommand("SELECT * FROM Users", conn);
    reader = cmd.ExecuteReader();

    while (reader.Read())
    {
        Console.WriteLine(reader["Username"]);
    }
}
finally
{
    reader?.Close();  // ✅ Closes reader if it was opened
}

This is slightly more error prone if you forget to add a finally block. But might make sense when you need to handle the reader separately from the command or connection.

1
169

When working with SQL Server, you may often need to count the number of unique values in a specific column. This is useful for analyzing data, detecting duplicates, and understanding dataset distributions.

Using COUNT(DISTINCT column_name)

To count the number of unique values in a column, SQL Server provides the COUNT(DISTINCT column_name) function. Here’s a simple example:

SELECT COUNT(DISTINCT column_name) AS distinct_count
FROM table_name;

This query will return the number of unique values in column_name.

Counting Distinct Values Across Multiple Columns

If you need to count distinct combinations of multiple columns, you can use a subquery:

SELECT COUNT(*) AS distinct_count
FROM (SELECT DISTINCT column1, column2 FROM table_name) AS subquery;

This approach ensures that only unique pairs of column1 and column2 are counted.

Why Use COUNT DISTINCT?

  • Helps in identifying unique entries in a dataset.
  • Useful for reporting and analytics.
  • Efficient way to check for duplicates.

By leveraging COUNT(DISTINCT column_name), you can efficiently analyze your database and extract meaningful insights. Happy querying!

1
115