Asynchronous programming is essential for building responsive applications, but it comes with challenges - particularly when you need to cancel operations.
Here's how to safely implement cancellation in C#.
The key to proper cancellation is the CancellationTokenSource class. This provides a token that can be passed to async methods and monitored for cancellation requests.
CancellationTokenSource
// Create a cancellation source with timeout var cts = new CancellationTokenSource(TimeSpan.FromSeconds(10)); var token = cts.Token; try { // Pass token to async operations await DoLongRunningTaskAsync(token); } catch (OperationCanceledException) { // Handle cancellation gracefully Console.WriteLine("Operation was canceled"); } finally { // Always dispose the CancellationTokenSource cts.Dispose(); }
When writing cancellable async methods, check for cancellation at appropriate points:
async Task DoLongRunningTaskAsync(CancellationToken token) { // Check before starting expensive work token.ThrowIfCancellationRequested(); for (int i = 0; i < 100; i++) { // Periodically check during loops if (token.IsCancellationRequested) { // Clean up resources if needed CleanupResources(); // Then throw the standard exception throw new OperationCanceledException(token); } await Task.Delay(100, token); // Built-in methods accept tokens } }
token.ThrowIfCancellationRequested()
OperationCanceledException
By following these patterns, you can ensure your async operations respond promptly to cancellation requests while maintaining clean, resource-efficient code.
When working with URLs in C#, encoding is essential to ensure that special characters (like spaces, ?, &, and =) don’t break the URL structure. The recommended way to encode a string for a URL is by using Uri.EscapeDataString(), which converts unsafe characters into their percent-encoded equivalents.
string rawText = "hello world!"; string encodedText = Uri.EscapeDataString(rawText); Console.WriteLine(encodedText); // Output: hello%20world%21
This method encodes spaces as %20, making it ideal for query parameters.
For ASP.NET applications, you can also use HttpUtility.UrlEncode() (from System.Web), which encodes spaces as +:
using System.Web; string encodedText = HttpUtility.UrlEncode("hello world!"); Console.WriteLine(encodedText); // Output: hello+world%21
For .NET Core and later, Uri.EscapeDataString() is the preferred choice.
Reading a file line by line is useful when handling large files without loading everything into memory at once.
✅ Best Practice: Use File.ReadLines() which is more memory efficient.
Example
foreach (string line in File.ReadLines("file.txt")) { Console.WriteLine(line); }
Why use ReadLines()?
Reads one line at a time, reducing overall memory usage. Ideal for large files (e.g., logs, CSVs).
Alternative: Use StreamReader (More Control)
For scenarios where you need custom processing while reading the contents of the file:
using (StreamReader reader = new StreamReader("file.txt")) { string? line; while ((line = reader.ReadLine()) != null) { Console.WriteLine(line); } }
Why use StreamReader?
Lets you handle exceptions, encoding, and buffering. Supports custom processing (e.g., search for a keyword while reading).
When to Use ReadAllLines()? If you need all lines at once, use:
string[] lines = File.ReadAllLines("file.txt");
Caution: Loads the entire file into memory—avoid for large files!
Enums are a great way to define a set of named constants in C#, but what if you need to iterate over all values dynamically? You can use** Enum.GetValues()** to loop through an enum without hardcoding values.
enum Days { Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday } foreach (Days day in Enum.GetValues(typeof(Days))) { Console.WriteLine(day); }
This would output the following:
Sunday Monday Tuesday Wednesday Thursday Friday Saturday
Alternative: Using Enum.GetNames() If you only need the string names, use Enum.GetNames() instead:
foreach (string name in Enum.GetNames(typeof(Days))) { Console.WriteLine(name); }
Register for my free weekly newsletter.